Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the updraftplus domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home3/acmiteao/public_html/wp-includes/functions.php on line 6114
ACM, Autor em Academia Cearense de Matemática - Página 21 de 25

Ensino da Matemática

Quem é professor há alguns anos lembra-se certamente das dezenas de ideias revolucionárias que foram sendo apresentadas como a grande solução para o ensino. Falava-se das vantagens da calculadora, dos inconvenientes do ensino de algoritmos, da aprendizagem em contexto, do papel central das competências em oposição ao conhecimento, do currículo adaptado aos alunos, da motivação para a construção do conhecimento, do ensino por computador, do ensino individualizado e de muitas outras propostas que iriam resolver todos problemas do ensino.

Epidemiologia

Modelos Básicos Modelos matemáticos são comumente usados pelos governos para prever o curso de uma doença infecciosa, como Covid-19. Eles servem como uma ferramenta de suporte para tomar decisões sobre possíveis intervenções. Nesta palestra serão apresentados alguns dos modelos mais básicos usados para representar estes tipos de doença, bem como um modelo para representar o … Ler mais

Geometria Hiperbólica

Durante cerca de dois mil anos, o postulado das paralelas de Euclides causou grande polêmica. De fato, o postulado é equivalente ao fato de a soma dos ângulos internos de um triângulo ser igual a 180 graus… Devemos realmente aceitar tal afirmação como uma verdade a priori, sem demonstração?

Bases moleculares

Praticamente toda função biológica depende da interação entre proteínas. A formação de um complexo molecular é um tópico central em vários processos biológicos como a transcrição de genes, regulação fisiológica e reações enzimáticas. Estudos destes processos têm importância imediata nas ciências biológicas, medicina, indústrias farmacêuticas e de biotecnologia. Por exemplo, vírus dependem destas interações para existirem e infectarem as células. Por essa razão, estudos de suas interações biomoleculares são fundamentais para o diagnóstico, tratamento e prevenção de doenças infecciosas. Nesta palestra, apresentaremos os principais aspectos destas interações biomoleculares, sua quantificação e o entendimento dos parâmetros físico-químicos envolvidos na complexação. Discutiremos exemplos em biomateriais, os aspectos moleculares e a virulência do SARS-CoV-2 e suas variantes, e o desenvolvimento de anticorpos para seu diagnóstico e tratamento.

Aplicações da Álgebra Abstrata

É muito provável que todo professor de Matemática já tenha deparado com a pergunta “para que estudar Matemática?”. Nesse sentido e, evidentemente, quanto mais informações o professor tenha a respeito de aplicações, mais ele ficará seguro em relação a possíveis respostas, inclusive em relação à clássica “Matemática está em todo lugar”.
Neste bate-papo, mostraremos que até a linguagem utilizada internamente em um computador é inspirada em fatos básicos da Álgebra, coisa que, ceertamente, não é discutida nos cursos de Matemática. Além disso, apresentaremos outras aplicações à computação, culminando com a surpreendente aplicação a um sistema de criptografia.

MetaMatemática

Ao uso de ferramentas das Estruturas Algébricas, em especial a Teoria de Grupos, se procura encontrar a Práxis de Análise Matemática. Objeto da palestra será, deslindar a Práxis de Análise Matemática, ao uso da Estrutura Algébrica, empregando a operação ‘simetria’ para indigitar, em casos concretos, a prestabilidade da Teoria de Grupos, sem interferência de operações aritméticas ou valia de números.

Teoria de Grupos

A palestra formula a feitura da definição de grupo e a introdução de alguns exemplos. Foco será dado no exemplo do grupo de permutação de três elementos e seu isomorfismo com as operações de simetria de um triângulo equilátero, como caminho para aplicações em física da matéria condensada. O grupo da representação matricial será introduzido, bem como algum maquinário que nos levam a aplicações como a elucidação dos modos normais de vibração de moléculas e as chamadas regras de seleção para transições entre níveis. O exemplo avançado do uso de teoria de grupos para o estudo da estrutura eletrônica do grafeno (material bi-dimensional) e do nanotubo (uni-dimensional) será citado ao final.

Trilha de Gauß

Buliçosamente, na arena da Matemática Empírica e da Matemática Experimental, à trilha de Gauß e à de Galois, à busca de conhecimentos somente descortinados pela Matemática Nova, os seminaristas inovam e constroem alamedas incríveis, para o devaneio da investigação matemática. Aqui a Teoria de Grupos ganha a auspiciosa dimensão que a Ontologia vai emblemar como pertinente.