Inscrições: https://forms.gle/anVpwDk468MMrCx79
Informações: acm@acm-itea.org
O rápido aumento na quantidade de dados tem aberto novas oportunidades para a saúde brasileira. Entre as várias novidades proporcionadas pelo big data, terá destaque o uso de modelos preditivos deinteligência artificial, conhecidos como machine learning. A palestra tem como objetivo apresentar essa área em rápido crescimento, além de seus benefícios, limitações e possíveis uso na área da saúde.

Alexandre Chiavegatto Filho
Possui graduação em Economia pela USP, doutorado em Saúde Pública pela USP e pós-doutorado na Universidade de Harvard.
É Professor Livre Docente do Departamento de Epidemiologia da Faculdade de Saúde Pública da USP.
Nos últimos anos, tem sido o Pesquisador Principal de projetos de inteligência artificial em saúde financiados pela FAPESP, CNPq, Microsoft e Fundação Lemann.
É o diretor do Laboratório de Big Data e Análise Preditiva em Saúde (Labdaps) da USP